Notes	Thinking Process
Exponential Growth (House)	
In Charlotte, houses and apartments are being built and sold at extremely high rates. Every time you listen to a local radio station, you hear commercials about apartments, houses, and real estate. What is the buzz all about?	
Did you know that most houses appreciate , which means over time they will be worth more than 100% of the value it was initially worth? Remember 100% is 1 as a decimal so (1+) means house problem.	What does it mean when we hear appreciate?
If I purchased a house for \$200,000 that was valued at \$200,000 and it appreciated 1.4% in 1 year, I would earn money if I sold it after a year.	What other times does something appreciate ?
Starting Value: \$200,000 sold 100% is 200,000(1) = \$200,000 \$200,000 earned 1.4% appreciation after 1 year is 200,000(.014) ¹ = \$2800	What does the 1 represent? The (.014)?
Our process would be 200,000(1) + 200,000($.014$) ¹ , but is simplified to be 200,000(1 + $.014$) ¹	Why did we add 1 & .014?
I would make \$2800 and all would be good! Total New Value \$202,800.00	What is 1 + .014?
We could model this situation as $y = 200,000(1.014)^1$	
Imagine if you waited 2, 3 or 10 years before you sold the house. What do you think could happen?	What does the power of 1 represent?
Exponential growth model (I CALL THEM HOUSE PROBLEMS) $y = A(1+r)^{x}$	
A = starting value r = rate of increase	Identify each part from the example above:
x = time in years y = value of items after x years	A = r = x =

You Try	
The population in a neighborhood in Charlotte is 5000 people. The number of people in that neighborhood is projected to increase by a rate of 7% each year for the next 10 years. Based on the projection, what will be the approximate population of that neighborhood in 4 years?	Key Words that tells us this is appreciation: A = r = x = $y = A(1+r)^{x}$
You Try You purchase land off Sugar Creek for \$30,000 in 2019. It earns 6% interest each year. What is the value of the land when you graduate?	Key Words that tells us this is appreciation: A = r = x = $y = A(1+r)^{x}$

Exponential Decay (Car)	
Exponential Decay (Car)	
Unlike houses, cars tend to have the exact opposite effect when we talk about value. The value of a car goes down extremely fast. This is called depreciation . It is nice to have a car, just know you will not be making any money if you try to sell it over the years. (1 -) means a car problem.	What does it mean when we hear depreciate?
If I purchase a 2020 Acura NSX for \$158,000 and the car depreciates 17% the first year. Start Value:	What other times does something depreciate ?
\$158,000 purchased at 100% would be 158,000(1) = 158,000 \$158,000 depreciated 17% after a year would be 158,000($(.17)^1$ = 28,860 Our process would be 158,000(1) - 158,000($(.17)^1$, but is simplified as	What does the 1 represent?
158,000(117) ¹	The (.17)?
This car would lose 28,860 in value after 1 year. The new value after a year would be \$131,140. I would lose money, so all is not well!	Why did we subtract 1 & .17?
We could model this situation as $y = 158,000(.83)^1$	What is 117?
Exponential decay model (I CALL THEM CAR PROBLEMS)	What does the power of 1 represent?
$Y = A(1 - r)^{1}$ $A = Initial Value$ $R = rate of decrease$ $X = time in years$ $Y = value after x year$	Identify each part from the example above:
	A = r = x = What is the sign of your r?

You Try Queroy takes a medicine that has a dosage of 8 mg, The medicine dissolves in his body at a rate of 30% per day. How many mg's of the medicine will be in his body after 3 days? (List all decimals of mg)	Key Words that tells us this is depreciation: What are your units?
	A =
	r =
	x =
	$y = A(1-r)^x$
You Try Sierra's parents purchase her a car for her 16 th birthday valued at \$15,000. If Sierra goes off to college in 2 years, what will be the value of the car in 2 years if it depreciates 19% each year?	Key Words that tells us this is depreciation:
	A =
	r =
	x =
	$y = A(1-r)^{x}$