Intro to Systems of Equations [Set 15]

Remember from unit 1 that an equation is **two lines** that represent a set of information. When we solve for x we find the x value of where the two lines cross. Checking our answer by substituting it back in will produce the y value of the point where the two lines intersect.

Solving x + 3 = 5 is looking at the two lines y = x + 3

As you can see the two lines cross at the point (2,5)

- If you solve the equation you get x = 2
- If you substitute 2 back in to the original problem you get (2) + 3 = 5 so y = 5

YOU TRY:

For the following equations write the two lines and use *desmos.com* to graph the two lines on the same coordinate plane. Give the intersection point.

1.	X – 2 = -4	Line 1 is y = Line 2 is y =	Intersection point is
2.	3x-1 = x + 5	line 1 is y =	Intersection point is
		Line 2 is v =	

3.	−x − 7 = -5	Line 1 is y =	Intersection point is
		Line 2 is y =	
4.	4x + 2 = x - 10	Line 1 is y =	Intersection point is
		Line 2 is y =	
5.	2x + 4 = 2x + 7	Line 1 is y =	Intersection point is
		Line 2 is y =	
6.	3x - 2 = 3x - 2	Line 1 is y =	Intersection point is
		Line 2 is y =	

The number of **<u>Solutions</u>** is the number of times the two lines intersect.

- Problem #'s 1-4 had 1 SOLUTION because the two lines crossed once.
- Problem # 5 had NO SOLUTION because the two lines never crossed (Parallel lines)
- Problem #6 had INFINITE SOLUTIONS because the two lines are the same they will touch everywhere.

Use *desmos.com* to determine the number and value of the solution.

7.	X - y = 3 7x - y = -3	Number of solutions? Solution point	8.	6x+8y = -22 y = -5	Number of solutions? Solution point
9.	-8x-10y = 2 6x + 5y = 2	4 Number of solutions? Solution point	10.	-9 + 5y = -4x -11x = -20 + 9	Number of solutions? By Solution point
11.	X + y = 4 2x + 2y = 8	Number of solutions? Solution point	12.	$X + 2y = 5$ $y = \frac{-1}{2}x - 4$	Number of solutions? Solution point